

Sct)= = \$ {(k(t))

5*= 5 f(k*)

y*= c*+ s*= f(k*)= c*+ sf(k*)

c = f(k*) = sf(k*)

3fck*) = (n+g+8) k*

C= fck*, - (n+g+8) k*

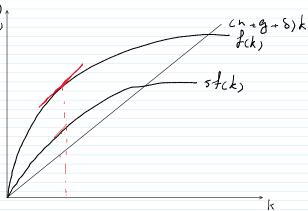
c*= f(k*(s,n,g,8)) - (n+g+8)k*(s,n,g,8)

 $\frac{0}{0} = \frac{1}{2} \left(\frac{1}{2} \left($

5f(k*)=(n+g+8)k*

f(k*)= k*

5 / = (n+g+8) /*



$$\frac{2c^*}{3s} = (f(k^*) - (n+8+8)) \frac{3k^*}{3s}$$

$$\frac{(n-2+8)k}{k^*}$$

$$\frac{(n-2+8)k}{k}$$

$$\frac{(n-3+8)k}{k}$$

$$\frac{(n-3+6)k}{k}$$

$$\frac{(n+3+6)k}{k}$$

$$\frac{(n+3$$

$$\frac{\partial y^*}{\partial s} = f(k^*) = f(k^*(n,g,\delta,s))$$

$$\frac{\partial y^*}{\partial s} = f'(k^*) \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$k' = 0 = 0 \quad k^* \quad k'(t) = s f(k^*(n,g,\delta,s)) - (n + g + \delta) k'(n,g,\delta,s) = 0$$

$$s f'(k^*) \frac{\partial k^*(n,g,\delta,s)}{\partial s} + f(k^*) = (n + g + \delta) \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

$$\frac{\partial y^*}{\partial s} = f(k^*) \cdot \frac{\partial k^*(n,g,\delta,s)}{\partial s}$$

(n+8+8) 3k* - sf(k*) 2k* = f(k*) 05 = f(k*) 05 = (n+g+8) = 5 f(k*) 37 = f(k*) 3k* = f(k*) f(k*)

(n+g+8) - 5 f(k*) $\frac{5}{9} \frac{9}{05} = \frac{5}{f(k^*)} \frac{f'(k^*)}{f(k^*)} \frac{f(k^*)}{(n+g+8)-s} \frac{f'(k^*)}{s}$ = (5 fck*). f(k*) f(k*) (n+g+8)- (5 f'ck*) fck*) 3 fck*) = (n+9+8) k* 5 27 - (n+g+8) k f(k) f(k*) (n+g+8) - (n+g+8) k* f(k*) = (n+g+8) k* f(k*) [f(k*)[(n+g+8) - (n+g+8)(k*f(k*))] $\frac{k^{*}}{y^{*}} = \frac{k^{*}}{y^{*}} \cdot \frac{\beta'(k^{*})}{y^{*}} = \frac{k^{*}}{f(k^{*})} \cdot \frac{\beta'(k^{*})}{y^{*}} = \frac{k^{*}}{k^{*}} \cdot \frac{\beta'($ f(kx) = kxx K* . Og* = dlng* = f(+) = + ~ Luy = Luk dluy d sie 5 Od* = 2k(k*)

$$\frac{5}{3} \frac{00^{k}}{00s} = \frac{\alpha_{k}(k^{n})}{1 - \alpha_{k}(k^{n})}$$

$$C*b-e' = \frac{20^{k}}{3} \frac{20^{k}}{00s} = \frac{\alpha}{1 - \alpha}$$

$$tavakolianh. githob.io$$

$$The Speed of Convergence:$$

$$k' (k-k^{*})$$

$$k' = sfck_{1} - cn - g + \delta_{1}k$$

$$f(x_{1}) \simeq \frac{f(x_{1})}{0!} + \frac{f(x_{2})}{(x_{1})} (x - x_{0}) + \frac{f(x_{2})}{2!} (x - x_{0})^{2}$$

$$+ \frac{f(x_{1})}{0!} (x - x_{1})^{n}$$

$$f(x_{2}) \simeq f(x_{1}) + \frac{f(x_{2})}{(x_{2})} (x - x_{2})^{n}$$

$$f(x_{2}) \simeq f(x_{1}) + \frac{f(x_{2})}{(x_{2})} (x - x_{2})$$

$$k'(t) = s f(k(t)) - (n - g + \delta_{2}) k(t)$$

$$k'(t) \simeq f(x_{2}) + \frac{2k(k)}{0!} k_{2}k^{*}$$

$$k'(t) \simeq f(k(t)) + \frac{2k(k)}{0!} k_{2}k^{*}$$

$$k'(t) = \frac{dk(t)}{dt} \qquad f(k - k^{*})$$

$$\frac{Y(t)}{Y(t)} = \frac{\lambda_{k}(t)}{k(t)} = \frac{\lambda_{k}(t)}{k(t)} \left[\frac{\dot{k}(t)}{k(t)} - \frac{\dot{k}(t)}{l(t)} \right] + R(t)$$

$$\frac{\dot{Y}(t)}{\dot{Y}(t)} - \frac{\dot{k}(t)}{l(t)} = \frac{\dot{k}(t)}{k(t)} \left[\frac{\dot{k}(t)}{k(t)} - \frac{\dot{k}(t)}{l(t)} \right] + R(t)$$

$$\frac{\dot{Y}(t)}{\dot{Y}(t)} = \frac{\dot{k}(t)}{k(t)} \left[\frac{\dot{k}(t)}{k(t)} \right] + \frac{\dot{k}(t)}{k(t)} + \frac{\dot{k}(t)}{k(t)} \left[\frac{\dot{k}(t)}{k(t)} \right] + \frac{\dot{k}(t)}{k(t)} + \frac{$$

$$g_{\gamma}(t) = \alpha g_{\lambda}(t) + \beta g_{\lambda}(t) + \delta g_{\gamma}(t) + (1-\alpha - \beta - \delta) \left[g_{\lambda}(t) + g_{\lambda}(t) \right] + (1-\alpha - \beta - \delta) \left[g_{\lambda}(t) + g_{\lambda}(t) \right]$$

$$g_{\gamma}(t) = \alpha g_{\lambda}(t) - \beta b + (1-\alpha - \beta - \delta) (n + g)$$

$$g_{\gamma} = g_{\lambda}(t) - \beta b + (1-\alpha - \beta - \delta) (n + g)$$

$$g_{\gamma} = \alpha g_{\gamma}^{bgP} - \beta b + (1-\alpha - \beta - \delta) (n + g)$$

$$g_{\gamma}^{bgP} = \alpha g_{\gamma}^{bgP} - \beta b + (1-\alpha - \beta - \delta) (n + g) - \beta b$$

$$g_{\gamma}^{bgP} = g_{\gamma}^{bgP} - g_{\lambda}^{bgP} - g_{\gamma}^{bgP} - g_{\gamma}^{$$